Spectral behaviour of a simple non-self-adjoint operator
نویسندگان
چکیده
منابع مشابه
Spectral Behaviour of a Simple Non-self-adjoint Operator
We investigate the spectrum of a typical non-selfadjoint differential operator AD = −d2/dx2 ⊗ A acting on L(0, 1) ⊗ C, where A is a 2 × 2 constant matrix. We impose Dirichlet and Neumann boundary conditions in the first and second coordinate respectively at both ends of [0, 1] ⊂ R. For A ∈ R we explore in detail the connection between the entries of A and the spectrum of AD, we find necessary c...
متن کاملCorrespondence of the eigenvalues of a non-self-adjoint operator to those of a self-adjoint operator
We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many real eigenvalues which accumulate only at ±∞. We use this result to determine the asymptotic distribution of the eigenvalues and to compute some of ...
متن کاملSpectral properties of unbounded JJ-self-adjoint block operator matrices
We study the spectrum of unbounded J-self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a sufficient condition for the spectrum being real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues. AMS Subject classifi...
متن کاملSome Spectral Properties of the Non-self-adjoint Friedrichs Model Operator
A non-self-adjoint, rank-one Friedrichs model operator in L2(R) is considered in the case where the determinant of perturbation is an outer function in the half-planes C±. Its spectral structure is investigated. The impact of the linear resolvent growth condition on its spectral properties (including the similarity problem) is studied.
متن کاملSpectral Properties of Random Non-self-adjoint Matrices and Operators
We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from self-adjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also describe a stochastic family of bounded operators in infinite dimensions for almost all of which the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2002
ISSN: 0022-0396
DOI: 10.1016/s0022-0396(02)00003-7